Access restriction: The type 'JPEGCodec' is not API

问题

今天导入项目时Eclipse报错如下:

Access restriction: The type 'JPEGCodec' is not API (restriction on required library 'C:\Program Files\Java\jdk1.8.0_191\jre\lib\rt.jar')

第一次遇到这种错误,百度了下,原来是因为Eclipse默认把访问受限的API设置成了Error级别,所以才会编译报错。

解决方法

方法一(推荐)

直接将项目的JRE给remove掉,然后再重新将JRE添加到项目中,操作如下:

  1. 右键项目,选择Properties -> Java Build Path -> Libraries -> 选中JRE System Library [jdkxxxx] -> 选择Remove
  2. 接着选择Add Librariy...,重新加入JRE

方法二

修改Eclipse中关于访问受限的API的编译级别:

Window -> Preferences -> Java -> Compiler -> Errors/Warnings,选择Deprecated and restricted API,将其中的Forbidden reference(access rules)的级别选为Warning。

参考链接

相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
<p> 欢迎参加英特尔® OpenVINO™工具套件初级课程 !本课程面向零基础学员,将从AI的基本概念开始,介绍人工智能与视觉应用的相关知识,并且帮助您快速理解英特尔® OpenVINO™工具套件的基本概念以及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔® OpenVINO™工具套件的Demo演示。通过本课程的学习,将帮助您快速上手计算机视觉的基本知识和英特尔® OpenVINO™ 工具套件的相关概念。 </p> <p> 为保证您顺利收听课程参与测试获取证书,还请您于<strong>电脑端</strong>进行课程收听学习! </p> <p> 为了便于您更好的学习本次课程,推荐您免费<strong>下载英特尔® OpenVINO™工具套件</strong>,下载地址:https://t.csdnimg.cn/yOf5 </p> <p> 收听课程并完成章节测试,可获得本课程<strong>专属定制证书</strong>,还可参与<strong>福利抽奖</strong>,活动详情:https://bss.csdn.net/m/topic/intel_openvino </p> <p> 8月1日-9月30日,学习完成【初级课程】的小伙伴,可以<span style="color:#FF0000;"><strong>免费学习【中级课程】</strong></span>,中级课程免费学习优惠券将在学完初级课程后的7个工作日内发送至您的账户,您可以在:<a href="https://i.csdn.net/#/wallet/coupon">https://i.csdn.net/#/wallet/coupon</a>查询优惠券情况,请大家报名初级课程后尽快学习哦~ </p> <p> <span style="font-size:12px;">请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“<a href="https://passport.csdn.net/service">用户服务协议</a>”,英特尔“<a href="https://www.intel.cn/content/www/cn/zh/privacy/intel-privacy-notice.html?_ga=2.83783126.1562103805.1560759984-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">隐私声明</a>”和“<a href="https://www.intel.cn/content/www/cn/zh/legal/terms-of-use.html?_ga=2.84823001.1188745750.1560759986-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">使用条款</a>”。</span> </p> <p> <br /> </p>
<p> 课程演示环境:<span>Ubuntu</span> </p> <p> <span> </span> </p> <p> 需要学习<span>Windows</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算等设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Ubuntu</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算和画出<span>PR</span>曲线<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <br /> </p> <p> <br /> </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007061437441198.jpg" /> </p> <img alt="" src="https://img-bss.csdnimg.cn/202007061438066851.jpg" />
<p> 课程演示环境:Windows10  </p> <p> 需要学习<span>Ubuntus</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Windows10</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <span> <img alt="" src="https://img-bss.csdnimg.cn/202007061503586145.jpg" /></span> </p> <p> <span><img alt="" src="https://img-bss.csdnimg.cn/202007061504169339.jpg" /><br /> </span> </p>
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页